二八杠规则-二八杠魔术麻将牌

Wavelet-based Edge MsFEM for Singularly Perturbed Convection-Diffusion Equations

發(fā)布者:文明辦發(fā)布時間:2023-12-05瀏覽次數(shù):340


主講人:李光蓮 香港大學數(shù)學系助理教授


時間:2023年12月7日10:00


地點:騰訊會議 767 652 711


舉辦單位:數(shù)理學院


主講人介紹:李光蓮,2015年畢業(yè)于美國德州農(nóng)工大學,獲數(shù)學博士學位。2015至2019年作為博士后先后在德國波恩大學和英國帝國理工大學工作。2019年至2020年在荷蘭格羅寧根大學工作,擔任助理教授。2020年至今在香港大學數(shù)學系工作。李光蓮老師的研究方向是多尺度建模的理論和數(shù)值方法,已在SIAM Journal on Numerical Analysis、SIAM Multiscale Modeling and Simulation、Inverse Problems、Journal of Computational Physics等國際一流學術期刊上發(fā)表了近三十篇論文,目前是Journal of Computational and Applied Mathematics的副主編。


內(nèi)容介紹:We propose a novel efficient and robust Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM) to solve the singularly perturbed convection diffusion equations. The main idea is to first establish a local splitting of the solution over a local region by a local bubble part and local Harmonic extension part, and then derive a global splitting by means of Partition of Unity. This facilitates a representation of the solution as a summation of a global bubble part and a global Harmonic extension part, where the first part can be computed locally in parallel. To approximate the second part, we construct an edge multiscale ansatz space locally with hierarchical bases as the local boundary data that has a guaranteed approximation rate without higher regularity requirement on the solution. The key innovation of this proposed WEMsFEM lies in a provable convergence rate with little restriction on the mesh size or the regularity of the solution. Its convergence rate with respect to the computational degree of freedom is rigorously analyzed, which is verified by extensive 2-d and 3-d numerical tests. This is a joint work with Eric Chung (The Chinese University of Hong Kong, China) and Shubin Fu (Eastern Institute of Technology, China).

足球开户网| 在线赌博网| 威尼斯人娱乐城 线路畅通中心| 澳门顶级赌场娱乐网| 永清县| 百家乐官网桌德州扑克桌| 百家乐官网视频下栽| 百家乐官网平技巧| 梦幻城百家乐官网的玩法技巧和规则 | 皇冠博彩网| 澳门百家乐官网骗人| 广州百家乐筹码| 大发888 备用6222.com| 繁峙县| 玩百家乐怎么才能赢| 百家乐官网国际娱乐网| 百家乐官网娱乐平台网| 百家乐桌码合| 灯塔市| 百家乐信誉好的平台| 百家乐投资| 红安县| 百家乐官网规则以及玩法 | 百家乐官网赌场凯时娱乐| 威尼斯人娱乐城注册| 赌博百家乐官网的乐趣| 明溪百家乐官网的玩法技巧和规则| 金木棉百家乐网络破解| 一二博国际| 百家乐官网实时赌博| 永利高a1娱乐城送彩金| 博彩网导航| 澳门金莎娱乐城| 百家乐官网娱乐平台会员注册 | 威尼斯人娱乐城首选802com| 娱乐城百家乐论坛| 犹太人百家乐的玩法技巧和规则| 搏天堂| 至尊百家乐停播| 百家乐官网开户送18元| 百家乐网络投注|