二八杠规则-二八杠魔术麻将牌

A free boundary problem with nonlinear advection and Dirichlet boundary condition

發布者:文明辦發布時間:2024-04-03瀏覽次數:85


主講人:蔡靜靜 上海電力大學副教授


時間:2024年4月7日10:30


地點:三號樓332室


舉辦單位:數理學院


主講人介紹:蔡靜靜,上海電力大學數理學院副教授,上海市優青,主要從事反應擴散方程自由邊界問題的理論研究,目前已在 European J. Appl. Math.、Nonlinear Anal.、J. Dynam. Differential Equations、Nonlinear Anal. Real World Appl.等國際重要學術期刊上發表論文多篇。


內容介紹:We study a free boundary problem for Fisher–KPP equation with nonlinear advection on [0,h(t)], which can model the spreading of chemical substances or biological species in the moving region. In this model, the free boundary h(t) indicates the spreading front of the species. Due to some factors (such as the migration of species), the advection is affected by population density. This paper mainly studies the asymptotic behavior of solutions. We prove that, the solution is either spreading (the survival area [0, h(t)] tends to [0, +∞), the solution converges to a stationary solution defined on the half-line), or converging to small steady state ([0, h(t)] goes to a finite interval and the solution converges to a small stationary solution with compacted support), or converging to big steady state ([0, h(t)] tends to a bigger finite interval, the solution converges to a large stationary solution with compacted support). Besides this, we also prove that, when the input of the species is a critical value, the solution is either spreading or in converging to medium steady state. Additionally, we also have two different spreading results. Finally, using traveling semi-wave, we give the spreading speed when spreading happens.

A8百家乐官网娱乐平台| 百家乐官网威尼斯人| 尊爵国际娱乐| 属猪与属蛇做生意怎么样| 博盈开户| 百家乐小游戏开发| 深泽县| 亚洲百家乐的玩法技巧和规则| 百家乐官网2号机器投注技巧| 高档百家乐桌子| 百家乐官网筹码方形| 88娱乐城官网| 百家乐真钱在线| 百家乐官网视频游戏金币| 大发888娱乐城打发888打发8| 太阳百家乐官网开户| 百家乐官网平玩法lm0| 南非太阳城皇宫酒店| 永利百家乐现金网| 百家乐官网投注外挂| 六合彩开奖结果| 百家乐唯一能长期赢钱的方法| 百家乐官网微笑打| 百家乐官网赌具哪里最好| 亲朋棋牌捕鱼技巧| 百家乐21点游戏| 木星百家乐官网的玩法技巧和规则 | 免费百家乐官网计划工具| 娱乐城注册送18元| 太阳城大酒店| 下载百家乐的玩法技巧和规则| 百家乐的嬴钱法| 阴宅24水口| 香港百家乐官网赌场娱乐网规则| 满洲里市| 星空棋牌官方下载| 大发888娱乐城 博狗| 女优百家乐的玩法技巧和规则| 百家乐连开6把小| 现金百家乐官网破解| 赌场百家乐官网投注公式|