二八杠规则-二八杠魔术麻将牌

Asymptotic behavior of the solutions for the 1D compressible NSK equations in the half line

發布者:文明辦發布時間:2024-05-14瀏覽次數:60

主講人:黎野平 南通大學教授


時間:2024年5月20日8:30


地點:三號樓332室


舉辦單位:數理學院


主講人介紹:黎野平,南通大學數學與統計學院教授、博士研究生導師、湖北“楚天學者”特聘教授。先后在湖北大學、武漢大學和香港中文大學獲教育學學士學位、理學碩士學位和博士學位。主要致力于非線性偏微分方程的研究,尤其是來自物理、材料、生物和醫學等自然科學中的各類非線性偏微分方程和非線性耦合方程組。在《Mathematical Models and Methods in Applied Sciences》,《SIAM Journal of Mathematical Analysis》,《Calculus of Variations and Partial Differential Equations》,《Journal of Differential Equations》和《Communications in Mathematical Sciences》等國際、國內的重要學術期刊雜志上發表論文100余篇,其中SCI90余篇。同時,主持完成國家自然科學基金3項和教育部博士點博導專項、上海市教委創新項目以及江蘇省自然科學基金等省部級科研項目10余項;現在正主持國家自然科學基金面上項目1項和參加國家自然科學基金重點項目1項。


內容介紹:In this talk, I am going to present the time-asymptotic behavior of strong solutions to the initial-boundary value problem of the compressible fluid models of Korteweg type with density-dependent viscosity and capillarity on the half-line $R^+$. The case when the pressure $p(v)=v^{-\gamma}$, the viscosity $\mu(v)=\tilde{\mu} v^{-\alpha}$ and the capillarity $\kappa(v)=\tilde{\kappa} v^{-\beta}$ for the specific volume $v(t,x)>0$ is considered, where $\alpha,\beta, \gamma\in\mathbb{R}$ are parameters, and $\tilde{\mu},\tilde{\kappa}$ are given positive constants. I focus on the impermeable wall problem where the velocity $u(t,x)$ on the boundary $x=0$ is zero. If $\alpha,\beta$ and $\gamma$ satisfy some conditions and the initial data have the constant states $(v_+, u_+)$ at infinity with $v_+, u_+>0$, and have no vacuum and mass concentrations, we prove that the one-dimensional compressible Navier-Stokes-Korteweg system admits a unique global strong solution without vacuum, which tends to the 2-rarefction wave as time goes to infinity. Here both the initial perturbation and the strength of the rarefaction wave can be arbitrarily large. As a special case of the parameters $\alpha,\beta$ and the constants $\tilde{\mu},\tilde{\kappa}$, the large-time behavior of large solutions to the compressible quantum Navier-Stokes system is also obtained for the first time. Our analysis is based on a new approach to deduce the uniform-in-time positive lower and upper bounds on the specific volume and a subtle large-time stability analysis.This is a joint work with Prof. Chen Zhengzheng.

皇冠线上开户| 澳门百家乐怎样下注| 百家乐官网游戏程序下载| 百家乐官网真人游戏娱乐场| 电脑版百家乐下注技巧| 至尊娱乐| 百家乐智能分析软| 百家乐官网分析概率原件| 大发888提款| 金彩百家乐官网的玩法技巧和规则 | 百家乐全自动分析软件| 百家乐赢输| 网络百家乐官网玩法| e世博官网| 明陞百家乐娱乐城| 筹码币百家乐官网麻将| 大发888免费软件下载| 百家乐官网博彩平| 南华县| 威尼斯人娱乐客户端| 澳门百家乐网站bt| 百家乐官网要怎么玩啊| 英皇百家乐官网的玩法技巧和规则| 嘉年华百家乐的玩法技巧和规则| 大发888在线网址| 波音娱乐城送彩金| 澳门百家乐官网必赢看| 大发888 xp缺少 casino| 波音网百家乐合作| 大发888真人娱乐场| 豪华百家乐桌子| 24楼风水化解| 昭平县| 威尼斯人娱乐| 百家乐技巧发布| 棋牌类单机游戏下载| 百家乐视频挖坑| 六合彩开奖公告| 大发888吧| 百家乐扑克牌手机壳| 反赌百家乐官网的玩法技巧和规则|