二八杠规则-二八杠魔术麻将牌

Neural Operator for Multidisciplinary Engineering Design

發(fā)布者:文明辦發(fā)布時間:2024-06-27瀏覽次數(shù):82


主講人:黃政宇 北京大學研究員


時間:2024年6月27日10:30


地點:三號樓332室


舉辦單位:數(shù)理學院


內容介紹:Deep learning surrogate models have shown promise in solving partial differential equations. These efficient deep learning surrogate models enable many-query computations in science and engineering, in particular the engineering design optimization we focus on. In this talk, I will first introduce a geometry-aware Fourier neural operator (Geo-FNO) to solve PDEs on arbitrary geometries, inspired by adaptive mesh motion and spectral methods. Furthermore, we study the cost-accuracy trade-off of different deep learning-based surrogate models, following traditional numerical error analysis, as the first step to building a complete theory of approximation error for these approaches. We demonstrate numerically the superior cost-accuracy trade-off of our approach. Finally, combining automatic differentiation tools of deep learning libraries, which efficiently compute gradients with respect to input variables enabling the use of gradient-based design optimization methods, our approach has demonstrated significant speed-up of airfoil design in transonic flow and real-world biomedical catheter design to prevent bacteria contamination.

百家乐官网经验之谈| 大发888188| 金城百家乐玩法| 真人百家乐官网怎么对冲| 许昌县| 致胜百家乐官网的玩法技巧和规则| 大发888存款方式| 888棋牌游戏| 沙龙百家乐官网娱乐| 大发888下载删除| 赌博百家乐秘籍| 澳门百家乐官网赌技巧| 百家乐麻将牌| 网上百家乐官网做假| 大发888 dafa888 octbay| 百家乐网络赌博地址| 百家乐官网透视牌靴| 老牌现金网| 百家乐最佳投注办法| 澳门赌球网| 女神百家乐娱乐城| 百家乐官网计划软件| 永利百家乐官网现金网| 凯旋门娱乐城开户网址| 百家乐大眼仔小路| 百家乐官网微笑玩法| 大发888老虎机苹果版| 百家乐赌场程序| 百家乐隐者博客| 赌百家乐官网的计划跟策略| 博狗百家乐官网真实| 乐透世界娱乐城| 百家乐最佳公式| 百家乐官网真人游戏娱乐网| 百家乐官网有几种玩法| 皇冠在线代理| 百家乐资深| 女性做生意的风水| 百家乐官网视频游戏聊天| 百家乐打庄技巧| 百家乐官网平玩法可以吗|