主講人:郭軍偉 杭州師范大學教授
時間:2025年6月4日10:30
地點:三號樓332室
舉辦單位:數理學院
主講人介紹:郭軍偉,杭州師范大學教授。獲南開大學博士學位,法國里昂第一大學博士后。曾任華東師范大學數學系教授,博士生導師。主要從事組合數學,q-級數和數論的研究。先后主持三項國家自然科學基金,以及上海市教育發展基金會晨光計劃,上海市科委青年科技啟明星計劃,江蘇省自然科學基金等項目,并入選江蘇省教育廳“青藍工程”中青年學術帶頭人等。2019年利用單位根來證明q-同余式的新方法處理了眾多q-同余式問題,是q-同余式方向的一個重要突破,其研究成果已被國際著名期刊《Advances in Mathematics》發表,迄今已在國際數學刊物上發表了一百多篇論文。
內容介紹:Guillera and Zudilin proved the following ``divergent" Ramanujan-type supercongruence: for any odd prime p, $$\sum_{k=0}^{p-1} \frac{(\frac{1}{2})_k^3}{k!^3}(3k+1)2^{2k} \equiv p\pmod{p^3}$$. Sun further conjectured that the above supercongruence is also true modulo $p^4$ for $p>3$, and a $q$-analogue of this result wasgiven by the author in an early paper. In this paper, we establish a new $q$-analogue of Sun's supercongruenceby employing the method of ``creative microscoping", developed by the author and Zudilin in 2019.