二八杠规则-二八杠魔术麻将牌

Analysis of direct piecewise polynomial collocation methods for the Bagley-Torvik equation

發(fā)布者:文明辦發(fā)布時間:2025-07-04瀏覽次數(shù):10


主講人:梁慧 哈爾濱工業(yè)大學(xué)(深圳)教授


時間:2025年7月10日14:00


地點:徐匯校區(qū)三號樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:梁慧,哈爾濱工業(yè)大學(xué)(深圳)理學(xué)院副院長、教授、博導(dǎo)。入選首屆“深圳市優(yōu)秀科技創(chuàng)新人才培養(yǎng)項目(杰出青年基礎(chǔ)研究)”,任期刊《Computational & Applied Mathematics》《Communications on Analysis and Computation》和《中國理論數(shù)學(xué)前沿》的編委,中國仿真學(xué)會仿真算法專委會委員、中國仿真學(xué)會不確定性系統(tǒng)分析與仿真專業(yè)委員會秘書、廣東省計算數(shù)學(xué)學(xué)會常務(wù)理事、廣東省工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會理事、深圳市數(shù)學(xué)學(xué)會常務(wù)理事。主要的研究方向為:延遲微分方程、Volterra積分方程的數(shù)值分析。主持國家自然科學(xué)基金、深圳市杰出青年基金、深圳市基礎(chǔ)研究計劃等10余項科研項目,獲中國系統(tǒng)仿真學(xué)會“優(yōu)秀論文”獎、黑龍江省數(shù)學(xué)會優(yōu)秀青年學(xué)術(shù)獎、深圳市海外高層次人才。目前已被SCI收錄文章40余篇,發(fā)表在SIAM J. Numer. Anal.、IMA J. Numer. Anal.、J. Sci. Comput.、BIT、Adv. Comput. Math.等20余種不同的國際雜志上。


內(nèi)容介紹:The piecewise polynomial collocation method does not always work for Caputo fractional differential equations (FDEs), since it is related to the well-known Conjecture 6.3.5 in Brunner’s 2004 monograph on the convergence of the collocation solution for weakly singular Volterra integral equations (VIEs) of the first kind, and this is the reason why in the existing literature, the collocation method is not used directly to solve FDEs, but rather indirectly to solve the reformulated VIEs. The Bagley-Torvik equation is a typical representative of a class of FDEs, whose highest order derivative of the unknown function is an integer, and a Caputo derivative is also involved, and the characteristic with dominant integer order derivative allows us to use collocation methods directly to numerically solve the Bagley-Torvik equation. In this paper, the existence, uniqueness and regularity of the exact solution for the initial value problem of the Bagley-Torvik equation are given by virtue of the theory of VIEs, but the piecewise polynomial collocation method is used directly to solve the Bagley-Torvik equation, and the global convergence is derived on graded meshes and the pointwise error estimate is obtained on uniform meshes. Moreover, the global superconvergence of the collocation solution is also obtained without any postprocessing techniques. Unlike the indirect reformulated numerical methods, one has to resort to the iterated numerical solution to improve the numerical accuracy. Some numerical examples are given to illustrate the theoretical results, and it also shows that our analysis for the Bagley-Torvik equation can be extended to more general integer order derivative dominant FDEs, even for time fractional partial differential equation with this characteristic.

百家乐唯一能长期赢钱的方法| 大发888登陆器下载| 百家乐官网好多假网站| 百家乐官网赢钱海立方| 真人百家乐官网试玩游戏| 百家乐大转轮真人视讯| 百家乐官网代理在线游戏可信吗网上哪家平台信誉好安全 | 金赞百家乐官网的玩法技巧和规则| 百家乐小九梭哈| 大发888m摩卡游戏 | 百家乐奥| 香港百家乐官网的玩法技巧和规则 | 百家乐技巧开户网址| 百威百家乐官网的玩法技巧和规则| 宝坻区| 玩百家乐输了| 金冠百家乐娱乐城| 大发888 漏洞| 带有百家乐的棋牌游戏有哪些| 加州百家乐官网娱乐城| 威尼斯人娱乐城真钱赌博| 扑克百家乐官网赌器| 百家乐官网庄闲规则| 威尼斯人娱乐城信誉好不好| 百家乐傻瓜式投注法| 百家乐官网娱乐城赌场| 玩百家乐去哪个娱乐城最安全| 百家乐澳门百家乐| 24山吉凶图| 百家乐赌场走势图| 澳门百家乐官网路单| 辉南县| 大发888游戏官方下载客户端| 百家乐博弈之赢者理论| 百家乐路单用处| 金臂百家乐官网注册送彩金 | 百家乐必胜| 罗盘24山图| 真人百家乐宣传| 在线百家乐技巧| 好用百家乐软件|