主講人:夏超 廈門大學教授
時間:2024年4月1日10:30
地點:騰訊會議 726 445 118
舉辦單位:數理學院
主講人介紹:夏超,廈門大學教授、博士生導師,福建省“閩江學者”特聘教授。2007年四川大學本科畢業,2012年于德國弗萊堡大學獲博士學位,先后在德國馬克斯普朗克應用數學研究所、加拿大麥吉爾大學做博士后研究。獲福建省青年科技獎。主要研究領域是微分幾何與幾何分析,在超曲面幾何中的等周型不等式和相關剛性、幾何自由邊界問題、預定曲率和曲率流、特征值估計等方面取得了若干研究成果,已在J. Differ. Geom.、Math. Ann.、Adv. Math.、Peking Math. J.、ARMA、TAMS、IMRN、CVPDE、CAG、JGA等國際高水平數學期刊發表論文40余篇。
內容介紹:Heintze-Karcher’s inequality is an optimal geometric inequality for embedded closed hypersurfaces, which can be used to prove Alexandrov’s soap bubble theorem on embedded closed CMC hypersurfaces in the Euclidean space. In this talk, we introduce a Heintze-Karcher-type inequality for hypersurfaces with boundary in convex domains. As application, we give a new proof of Wente’s Alexandrov-type theorem for embedded CMC capillary hypersurfaces in the half-space. Moreover, the proof can be adapted to the anisotropic case in the convex cone, which enable us to prove Alexandrov-type theorem for embedded anisotropic capillary hypersurfaces in the convex cone. This is based on joint works with Xiaohan Jia, Guofang Wang and Xuwen Zhang.