主講人:蔣云峰 美國堪薩斯大學教授
時間:2024年6月14日10:30
地點:三號樓332室
舉辦單位:數理學院
主講人介紹:蔣云峰,堪薩斯大學教授,研究方向為代數幾何和數學物理,特別是Gromov-Witten理論和Donaldson-Thomas理論,以及與雙有理幾何,辛拓撲,幾何表示論,枚舉組合,S-對偶猜想和鏡面對稱間的聯系。科研成果豐碩,在Adv. Math., JDG, JAG, IMRN, Math. Ann. 等著名數學雜志發表論文多篇,是國際著名的代數幾何專家。
內容介紹:The theory of enumerative invariants of counting curves (Riemann surfaces) in projective varieties has been an important theory in the last decades. The enumerative invariants were motivated by theretical physics---string theory and gauge theory, and include Gromov-Witten theory, Donaldson-Thomas theory and more recently Vafa-Witten theory. It is hoped that there may exist a theory of counting algebraic surfaces in projective varieties. A theory of counting surface in a Calabi-Yau 4-fold has been constructed using Donaldson-Thomas theory of 4-folds. In this talk I will try to give evidences of a counting surface theory using stable maps, and explain why it is difficult to construct the counting surface invaraints.