二八杠规则-二八杠魔术麻将牌

Solutions with simultaneous synchronized and segregated components for nonlinear Schrodinger systems

發(fā)布者:文明辦發(fā)布時間:2024-06-17瀏覽次數(shù):154

主講人:葉東 華東師范大學教授


時間:2024年6月18日14:00


地點:三號樓332室


舉辦單位:數(shù)理學院


主講人介紹:葉東,現(xiàn)任華東師范大學數(shù)學科學學院教授。1990年畢業(yè)于武漢大學中法數(shù)學班,1994年在法國卡尚高等師范學院獲得博士學位,后長期在法國大學任職,回國前是法國洛林大學的一級教授。主要研究領(lǐng)域是非線性偏微分方程和幾何分析。2018年入選國家級高層次人才計劃,于當年9月全職回到華東師范大學工作。


內(nèi)容介紹:We consider a nonlinear Schr\odinger system in ${\mathbb R}^3$: \begin{align*} -\Delta u_j +P_j(x) u=\mu_j u_j^3+\sum\limits_{i=1,i\neq j}^N\beta_{ij}u_i^2u_j, \end{align*} where $N\geq3$, $P_j$ are nonnegative radial potentials; $\mu_j>0$, $\beta_{ij}=\beta_{ji}$ are coupling constants. This type of systems has been widely studied in the last decade, many purely synchronized or segregated solutions are constructed, but few considerations for simultaneous synchronized and segregated solutions exist. On the other hand, there are new challenges in dealing with the existence of multiple sign-changing solutions or semi-nodal solutions. Using Lyapunov-Schmidt reduction method, we construct new type of positive and sign-changing solutions with simultaneous synchronization and segregation. We prove the existence of infinitely many non-radial positive or also sign-changing vector solutions, where some components are synchronized but segregated with other components; the energy level can be arbitrarily large; and our approach works for general any number of components $N \geq 3$. This is a joint work with Qingfang Wang.

熱點新聞
最新要聞
威尼斯人娱乐棋牌下载| 网络百家乐漏洞| 百家乐百家乐论坛| 百家乐官网韩泰阁| 川宜百家乐官网破解版| 洛浦县| 网上有百家乐玩吗| 百家乐上分器定位器| 千亿娱百家乐官网的玩法技巧和规则 | 水果机价格| 百家乐德州扑克桌布| 百家乐官网庄牌闲牌| 百家乐官网客户端LV| 精英娱乐城开户| 玩百家乐的玩法技巧和规则| 真人百家乐游戏网址| 百家乐官网有公式| 百家乐官网十赌九诈| 女神百家乐官网娱乐城| 678百家乐官网博彩娱乐平台| 百乐坊百家乐官网娱乐城| 百家乐官网赌场娱乐| 百家乐官网网上真钱赌场娱乐网规则| 怎样打百家乐官网的玩法技巧和规则| 迪威百家乐官网娱乐场| 百苑百家乐官网的玩法技巧和规则 | 扎囊县| 凱旋門百家乐官网娱乐城| 百利宫百家乐的玩法技巧和规则 | 百家乐平注常赢玩法技巧| 皇冠网站| 澳门百家乐官网娱乐场开户注册 | 六合彩官网| 百家乐官网赌场娱乐城大全| 线上百家乐网站| 龙腾国际娱乐| 闲和庄百家乐官网赌场娱乐网规则 | 巫溪县| 属龙属虎合伙做生意吗| 汇丰百家乐娱乐城| 大发888亚洲游戏咋玩|