二八杠规则-二八杠魔术麻将牌

Neural Operator for Multidisciplinary Engineering Design

發(fā)布者:文明辦發(fā)布時間:2024-06-27瀏覽次數(shù):145


主講人:黃政宇 北京大學(xué)研究員


時間:2024年6月27日10:30


地點:三號樓332室


舉辦單位:數(shù)理學(xué)院


內(nèi)容介紹:Deep learning surrogate models have shown promise in solving partial differential equations. These efficient deep learning surrogate models enable many-query computations in science and engineering, in particular the engineering design optimization we focus on. In this talk, I will first introduce a geometry-aware Fourier neural operator (Geo-FNO) to solve PDEs on arbitrary geometries, inspired by adaptive mesh motion and spectral methods. Furthermore, we study the cost-accuracy trade-off of different deep learning-based surrogate models, following traditional numerical error analysis, as the first step to building a complete theory of approximation error for these approaches. We demonstrate numerically the superior cost-accuracy trade-off of our approach. Finally, combining automatic differentiation tools of deep learning libraries, which efficiently compute gradients with respect to input variables enabling the use of gradient-based design optimization methods, our approach has demonstrated significant speed-up of airfoil design in transonic flow and real-world biomedical catheter design to prevent bacteria contamination.

熱點新聞
最新要聞
缅甸百家乐官网赌城| 至尊百家乐停播| 百家乐官网在线娱乐可信吗| 财富百家乐的玩法技巧和规则| 金百亿百家乐官网娱乐城| 百家乐官网免佣台| 加州百家乐娱乐城| 金冠娱乐城网站| 克拉克娱乐城| 网上百家乐好玩吗| 金龙娱乐城开户送彩金| 百家乐官网桌台布| 永利百家乐娱乐场| bet365百科| 92棋牌游戏| 实战百家乐十大取胜原因百分百战胜百家乐不买币不吹牛只你能做到按我说的.百家乐基本规则 | 988百家乐官网娱乐| 申博百家乐公式软件| 百家乐官网哪条路好| 百家乐赢钱lv| 香港六合彩马会| 百家乐官网视频多开| 百家乐赌钱| 新世纪娱乐城信誉怎么样| 鼎尚百家乐官网的玩法技巧和规则 | 澳门百家乐官网开户投注| 属龙属虎合伙做生意吗| 皇冠网小说微博| 百家乐赢率| 百家乐官网路单| bet365百家乐| 高档百家乐桌| 罗浮宫百家乐官网的玩法技巧和规则 | 大发888 的用户名| 利都百家乐国际赌场娱乐网规则| 百家乐5式直缆打法| 缅甸百家乐官网娱乐场开户注册| 百家乐官网真人游戏投注网| 百家乐官网庄闲几率| 澳门赌场视频| 最新皇冠网址|