主講人:王博學(xué) 武漢大學(xué)
時(shí)間:2025年6月7日13:00
地點(diǎn):徐匯校區(qū)三號(hào)樓332室
舉辦單位:數(shù)理學(xué)院
主講人介紹:王博學(xué),武漢大學(xué)博士生,師從王六權(quán)教授,并入選武漢大學(xué)數(shù)學(xué)學(xué)院拔尖人才培養(yǎng)計(jì)劃。其主要研究領(lǐng)域?yàn)閝-級(jí)數(shù)與模形式,特別在Rogers-Ramanujan型恒等式的研究中取得一定進(jìn)展,其研究成果已發(fā)表于《Advances in Mathematics》,《Transactions of the American Mathematical Society》等期刊。
內(nèi)容介紹:Mizuno providied 15 examples of generalized rank three Nahm sums with symmetrizer diag(1,2,2) which are conjecturally modular. Using the theory of Bailey pairs and some q-series techniques, we establish a number of triple sum Rogers--Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except for two non-modular cases. We show that the two exceptional cases of Nahm sums are sums of modular forms of weights 0 and 1. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers diag(1,1,2) and diag(1,2,2).